

AFRL-IF-RS-TR-2005-352
Final Technical Report
October 2005

ONLINE SIMULATION AND CONTROL

Science Applications International Corporation (SAIC)

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K147

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-352 has been reviewed and is approved for publication

APPROVED: /s/

WAYNE A. BOSCO
Project Engineer

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
OCTOBER 2005

3. REPORT TYPE AND DATES COVERED
Final Jul 00 –Sep 05

4. TITLE AND SUBTITLE
ONLINE SIMULATION AND CONTROL

6. AUTHOR(S)
Jerilyn J. McElwee,
Bradley S. Gaspard,
Elaine Keith

5. FUNDING NUMBERS
C - F30602-00-C-0189
PE - 62301E
PR - K147
TA - 18
WU - A1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Science Applications International Corporation (SAIC)
8301 Greensboro Drive
McLean Virginia 22102-3600

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-352

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Wayne A. Bosco/IFGA/(315) 330-3578/ Wayne.Bosco@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Defense Advanced Research Projects Agency (DARPA) invested five years in research to improve the fidelity and
performance of network simulations. Universities, industry and government have worked together to demonstrate new
state of the art research in the areas of network modeling and simulation. Within the DARPA Network Modeling
Simulation (NMS) program, SAIC performed research in the network area of Online Simulation and Control (OSC). The
goal of the OSC project was to determine value added military uses of high performance network simulation and to
research the infrastructure that is required to enable eventual deployment of network simulation to those locations.
DARPA’s investment has improved the state of the art and demonstrated to DoD observers the potential of network
modeling and simulation. The OSC framework provides a capability to apply network simulation to real-time network
management. OSC allows simulations to run in conjunction with a real network as a decision aid. The simulations can
be used to explore alternative network tunings and to compare them with the performance of the actual network as they
both execute. The OSC framework is currently delivered as a virtual test bed for testing the ability of a simulation to
provide accurate results in near real-time from the limited information available from the real-network. The framework
includes standard scenarios and network traffic for study. It is modularly adaptable to real test beds as well

15. NUMBER OF PAGES
31

14. SUBJECT TERMS
Network Simulation, High Performance Networking, Network Modeling Simulation, NMS,
Global Information Grid, GIG 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

1. OVERVIEW...1
1.1. BACKGROUND ...1
1.2. DOCUMENT OVERVIEW ...1

2. OSC DESIGN ...2
2.1. SYSTEM REQUIREMENTS ...4
2.2. DISPLAYS ..4
2.3. CONFIGURATION ...5

2.3.1. Stimulator ..5
2.3.2. Simulator ...6
2.3.3. Replay ..7
2.3.4. Cluster ...7
2.3.5. Monitor ..8
2.3.6. Graph...9
2.3.7. Optimizer ...11
2.3.8. SA (Situational Awareness) ...12

2.4. REAL-TIME DATA FLOW...13
2.4.1. Traffic data input via files..13
2.4.2. Data collection to graphs via sockets and agents..14

2.5. ADDING A SIMULATION ENGINE..14
2.5.1. Meeting the interface requirements ...14
2.5.2. Adding a launch capability ..15

3. OVERVIEW OF SPECIFIC ACCOMPLISHMENTS ..16
4. WEB SERVICES BASED ARCHITECTURE FOR SIMULATION MANAGEMENT AND CONTROL
– THE WAY FORWARD...19

4.1. ADAPTING EXISTING APPLICATIONS TO WEB SERVICES ...19
4.1.1. SOAP Server ..20
4.1.2. Web Services Client ...21

4.2. WEB SERVICES SUMMARY ..24
5. CONCLUSION...25
6. ACRONYMS ..26

ii

LIST OF FIGURES

Figure 2-1. OSC Framework.. 2

Figure 2-2. OSC Architecture .. 3

Figure 2-3. Sample Main Configuration window .. 4

Figure 2-4. Sample Stimulator Configuration window.. 5

Figure 2-5. Sample Simulator Configuration window... 7

Figure 2-6. Sample Cluster Configuration window ... 8

Figure 2-7. Sample Monitor Configuration window ... 9

Figure 2-8. Sample Graph Configuration window .. 10

Figure 2-9. Sample ipInReceives Graph window .. 11

Figure 2-10. Sample Optimizer Configuration window .. 12

Figure 2-11. Sample SA Configuration window ... 13

Figure 2-12. OSC Framework Interfaces... 14

Figure 3-1. OSC Contribution Metrics .. 17

Figure 4-1. Original Configuration .. 20

Figure 4-2. Test Configuration .. 20

Figure 4-3. Windows Platform Architecture ... 21

Figure 4-4. Web client - The “SimConsole” Portlet .. 22

Figure 4.5. Web client – Launching a Federate ... 23

Figure 4-6. Web client – Summary Status ... 24

1

1. Overview

1.1. Background
Defense Advanced Research Projects Agency (DARPA) has invested five years in research to
improve the fidelity and performance of network simulations. Universities, industry and
government have worked together to demonstrate new state of the art research to the Department
of Defense (DoD) and others at principal investigator meetings. Within the DARPA Network
Modeling Simulation (NMS) program the basic goal of the Online Simulation and Control
(OSC) project has been to determine value added military uses of high performance network
simulation and to research the infrastructure that is required to enable eventual deployment of
network simulation to those locations. DARPA’s investment has improved the state of the art
and demonstrated to DoD observers the potential of network modeling and simulation.

The OSC framework provides a capability to apply network simulation to real-time network
management. OSC allows simulations to run in conjunction with a real network as a decision aid.
The simulations can be used to explore alternative network tunings and to compare them with the
performance of the actual network as they both execute. The OSC framework is currently
delivered as a virtual test bed for testing the ability of a simulation to provide accurate results in
near real-time from the limited information available from the real-network. The framework
includes standard scenarios and network traffic for study. It is modularly adaptable to real test
beds as well.

The primary focus of OSC has been to improve network management by the use of near-real-
time simulation. For network management the simulation is used to estimate the Quality-of
Service (QOS) as perceived by the network users. The simulation is also used to allow near-real-
time “what-if” studies supporting network tuning in the presence of time varying traffic
conditions.

The use of simulations to support design decision on complex systems or to support the
warfighter can take months. Creating the scenarios and importing them into the simulation tool,
to run the simulation, and to analyze the results can be a time-consuming process. OSC can
shorten this time cycle.

1.2. Document Overview
This document consists of the following sections. Section 1 provides an OSC background
description. Section 2 is a more detailed description of the OSC design and architecture. Section
3 provides a summary of the major accomplishments completed under this task. Section 4
describes some latter work which looked at shifting from a basic client/server type of
architecture to one based on Web Services.

2

2. OSC Design
The OSC framework incorporates network simulation into network management as shown below.

Figure 2-1. OSC Framework

The integration paradigm provides execution of one or more simulations simultaneously with the
network. Traffic “sniffers” extracting actual or simulated network traffic continuously feed
network traffic information to the simulation. In addition, the system continuously processes the
simulation outputs to provide summaries relevant to the network manager. In the current
implementation, the simulation can be stopped, rebuilt and restarted when the network topology
changes. This is appropriate at the current time, since none of the simulation engines that we
have explored can change the network topology in a natural way while the simulation is
executing.

The paradigm used by the framework was chosen for its ability to provide a number of key
features:

• Reduced demands on simulation speed to provide timely results.
• Continuous simulation validation.
• Simplification of presentation of simulation results to the network manager.
• Simplified management of simulation execution allowing the network manager to exploit

the simulation with little effort.

Network
Manager

SimulationNetwork

• Gray arrows show interfaces available in
traditional network management.

• Green arrows show the interfaces added by the
framework.

• Yellow arrow shows a future OSC interface.
• All interfaces provide continuous information

flow during network operation.
• Interface definitions track those used by typical

network managers and typical networks.
• The simulation box represents any simulation

engine meeting the interface requirements.

3

The system architecture is shown in Figure 2.2.

Sim

Traffic
File

Metrics
File

Metrics
File

Metrics
File

AgentAgent
Agent

GraphGraphGraph

Output API

Input API

•CoralReef
•OpenView
•Other Sims

•NS/PDNS
•GloMoSim
•Opnet
•Logger
•JAVASim

•ipInReceives
•ipOutBytes
•Flows Files

Traffic
File

•Flows.cr
•TpSendFlows.txt

Optimizer/
Dispatcher

Event
logs

System
Files

App
Files

Main

Indicates socket
connection

User
Files

Optimizer API

MySQL
Database

GraphGraphQoS_Logic

AgentAgent
QoS_Agent

GraphGraphQoS_Plot

Stim/Sim API

DB API

Sim

Stim Stim

Monitor

Network
Tuning/Analysis

•Limit Files
•Stats Files
•Run-Time Options

•Configuration Files

•App-default Files

Filter
Files •Filter Files

Figure 2-2. OSC Architecture

4

2.1. System Requirements

The OSC application is written in Tcl/Tk/BLT and uses either MySQL or Postgress as the
database server. OSC has been tested using Solaris 6 and 8 and Linux Red Hat 7.1 and 8.0 and
Windows 2000. OSC requires:

• Tcl version 8.3.2, and
• Tk version 8.3.2, and
• BLT version 2.4u, and
• MySQL Version 3.23.52, or
• Postgress Version 7.3.2

An Application Programming Interface (API), developed in “C”, allows for the integration of
simulator engines.

2.2. Displays
The OSC Framework is a graphical user interface comprised of a set of displays that are
launched from one primary display (Main). The Main display also controls the operation of the
OSC Framework by defining the network interface(s), Simulation interface(s), the Graphical
statistical displays and the launching and/or termination of the configuration (Figure 2-3).

Figure 2-3. Sample Main Configuration window

5

2.3. Configuration
The Main display provides the ability to configure the desired operational approach, store it and
then load and execute a configuration quickly. Each configuration item is identified with an icon
on the Main display.

A configuration is saved to a file that can be recalled and edited if desired. Once a configuration
is created, the user has the option to launch an individual item, a subset of the configuration, or
the entire configuration. The OSC Main process controls and synchronizes all processes.

A configuration in OSC may include Stimulators, Simulators, Clusters, Replays, Monitors,
Optimizer, Situational Awareness (SA) and Graphs. To add a process to the configuration, the
user selects the item desired from a drop down menu. Once selected, the system generates an
icon to represent that entity. After creating the icon, the user can configure the item by "right
clicking" within the icon space. The data flows are defined by the system based on the user-
developed configuration. For instance, Stimulators feed Simulators, while Simulators feed
Graphs.

2.3.1. Stimulator
A Stimulator is the source of network traffic data that will feed into the Simulations in real-time
(Figure 2.4). The Stimulator can be a simulation of an instrumented network, a real network or
captured and stored traffic information from a real network feed into the OSC framework. When
the Stimulator is also functioning as a Simulation running in real-time, its use is special from the
other simulators in the configuration, which makes it a Stimulator. The special feature is that
selected components of its outputs become inputs to each of the Simulators.

Figure 2-4. Sample Stimulator Configuration window

6

The OSC framework allows plug-and-play of a choice of simulation engines as a Stimulator. To
make a good test bed, we have used simulation engines integrated with the SEAMLSS
environment to model network users using the network in a doctrinally defined manner. This is
not required in general. This external traffic injection mimics real users on a simulated network,
thus increasing the credibility and relevance of results obtained with the test bed for use on real
networks.

A Stimulator is instrumented to output flow information generated by one node, and sent to
another. The flow information contains information such as which node sent the packets, which
node(s) are to receive the packets, and how many bytes and packets are being sent. The reporting
interval is controllable from the Stimulator itself and is not part of the configuration window.
The individual nodes in the simulations are identified by IP address, as in a real network. This is
currently the "tpSendFlow" file, which stands for "transport layer flows". If there is no
Stimulator in the configuration, then the Simulators use only traffic set in the Simulator. The
format is the same independent of which layer outputs the flows.

2.3.2. Simulator
A Simulator in the main OSC interface represents a simulation modeling the actual network, or
some derivation (Figure 2-5). The Simulator may obtain external message traffic from a
Stimulator. If so, the simulator may model some or all of the individual IP addresses given by the
Simulator.

There may be many simulations simultaneously configured and launched in the OSC interface.
Each reads the "tpflows" from the stimulator, if so configured. Each Simulation models
whichever fraction of the traffic is appropriate for it to model.

7

Figure 2-5. Sample Simulator Configuration window

2.3.3. Replay
A Replay provides data for graphing in the same way that a Simulator does, except the data was
previously generated and recorded. A Replay is a Simulator where the "launch" button is set to
"off" in the configuration window. Refer to the Simulator section for more detail. To add a
Replay to a configuration, select Edit, create, "replay" from the main menu. A Replay box icon
will appear on the screen and can be configured by "right clicking" on the icon.

2.3.4. Cluster
A group of Simulators or Replays can be grouped into a Cluster (Figure 2-6). A Cluster is used
when each Simulator or Replay is a piece of a total network, perhaps distributed among multiple
machines. The Cluster defines the cumulative set of Simulations or Replays that describe the
network.

8

Figure 2-6. Sample Cluster Configuration window

2.3.5. Monitor
The Monitor process ingests network traffic collected, and reports the statistics as they are input
(Figure 2-7). A Monitor is especially useful for comparing the results of a simulator, or
comparing the upstream and downstream feeds across another gateway or hardware device. Only
primitive metrics are collected by the Monitor since the Monitor process cannot determine delays
in messages.

9

Figure 2-7. Sample Monitor Configuration window

To create a Monitor, select Edit, create, "monitor" from the main menu. A Monitor icon will
appear on the screen and can be configured by "right clicking" on the icon.

2.3.6. Graph
Graphs provide the opportunity to create displays of data that is the output from Stimulators,
Simulators, Replays and/or Monitors (Figure 2-8). Each Graph icon in a configuration creates at
least one displayed Plot. Each Graph displays data for one statistic collected from one or more
data sources. This allows for the simultaneous comparison of data from different Stimulators,
Simulators, Replays and/or Monitors.

10

Figure 2-8. Sample Graph Configuration window

To create a Graph, select Edit, create, "graph" from the main menu. A Graph icon will appear on
the screen and can be configured by "right clicking" on the icon.

Each Graph icon created results in one Graph being displayed. That display is created when the
configuration is launched, or the individual Graph is executed. The Graph display can be viewed
on the current platform, or any other platform configured in the Display Host icon. An example
graph is shown in Figure 2-9.

11

Figure 2-9. Sample ipInReceives Graph window

2.3.7. Optimizer
The Optimizer process allows several side-by-side simulations to be compared dynamically
(Figure 2-10). In general, the Optimizer accepts a list of variables, each with a series of values,
and generates a single simulation run for a subset of these variable/value combinations. Each of
these simulations generates a QoS metric that the Optimizer uses as a condition for determining
whether this run is better or worse than other runs. The Optimizer, in effect, tries to maximize the
QoS value. The process of generating new simulation parameters, running the simulation, and
obtain the QoS metric continues until either the list is exhausted or the Optimizer cannot
maximize the QoS value any more. Once complete, the Optimizer informs the Network Manager
which run produced the best overall QoS and the simulation parameters comprising that run.
Hence, the Optimizer finds the optimal network configuration based on the list of parameters
supplied. Optimizers have their own plots. The first is the QoS value per Simulation. The second
is the QoS averaged over several simulations (referred to as a generation). The generation plot
also displays the local minimum and maximum QoS values of the members.

12

Figure 2-10. Sample Optimizer Configuration window

2.3.8. SA (Situational Awareness)
A SA process allows the user to visualize the data on a background map (Figure 2-11). The SA
process reads the Scenario Description File (SDF) file and generates positional information about
each item. This information is injected into the database, with updates performed at the relevant
time as specified in the SDF file. Thus, an external process, such as any Joint Mapping Tool Kit
(JMTK)-like Graphical Information System tool can display the current positions of the nodes
processed in the simulation. Furthermore, the OSC can accept node positions from an external
process provided the external process injects the data into the database.

13

Figure 2-11. Sample SA Configuration window

2.4. Real-time data flow
A key aspect of integrating simulation engines for online simulation is input and output of data in
real-time. In contrast typical network simulation uses a batch process, which OSC helps a
simulation engine to replace with the real time requirements.

2.4.1. Traffic data input via files
Traffic data input from a stimulator (such as a real network or another simulation) into a
simulation is accomplished through interface files (generated through the API). To inject
external message traffic into the simulation, this file must be read. To properly synchronize file
transfers, the file writer includes an "end interval" to indicate that it has provided all information
for an interval. The file reader can then read each interval, and when the "end interval” marker is
found, it can execute the simulation, up to the end of the interval knowing that no additional
traffic information will be forthcoming for that interval. In some instances, there is also an “end
run” indicating the end of the input file.

A simulation may also generate its own traffic. Thus, the simulator producing a
“tpSendFlow.txt” file, and feeds this data to another simulation becomes a stimulator itself. A
simulator may also read a tpSendFlow.txt file while producing its own.

A version in which the flow is via sockets rather than files is available. The key challenge is
negotiation of the socket port numbers, as those may conflict if multiple users are on the system.

14

2.4.2. Data collection to graphs via sockets and agents
Data collection is output from each simulation as files to the sub directory "out_data" for that
simulation. The data is in two formats, binary and American Standard Code for Information
Interchange (ASCII) text files. A simulation can write either, both or neither of the formats.

When a graph is launched from the OSC main window, it, in turn, launches one or more agent
processes. An agent is tied to a simulator for that particular data type. The agents look for the
output files needed by the graph and transfer the data via sockets to the computer at which the
graph process is running. The graph process reduces the data and creates the display. The
simulation engine need only create the files that the agent reads.

2.5. Adding a Simulation Engine

2.5.1. Meeting the interface requirements
The interfaces required for inserting a simulation include both input and output specifications are
shown in Figure 2-12.

Figure 2-12. OSC Framework Interfaces

Simulation

Network Topology;
SEAMLSS SDEFs &

PDEFs

Communication
Traffic; Evolving

Standards
MIB Statistics;

 Per HPOV

Network Tuning
(No Standard Yet)

Terrain
 (No Standard Yet)

Operational Metrics;
Based on SEAMLSS
Thread Output File

Standard interfaces for plugging a simulation into the OSC framework. The standard interfaces in green
are required now. They emphasize the real time data feeds. The simulation must read and write these
flows to support real time. The standard flow in blue uses the SDF/PDEF files format from the
NetWars/SEAMLSS efforts.

15

For each of the data flows there may be more than one format. For instance, the raw statistics are
in both ASCII and binary data formats. All of the standards to date have at least an option to
work via files. Using files, one process writes the file while one or more other processes read the
file -- concurrently.

2.5.2. Adding a launch capability
To launch a new simulation engine from the OSC main interface, an application script named
"app_start.csh" for executing that application must be generated and put into the “scripts”
directory. Its location is a "script" sub-directory under the directory name specified in the
administration menu for the application. The script will be called for any "stim" or "sim" using
that application when a user specifies "execute configuration" from the main interface.

The script is intended to be generic, however, at some point the script must contain the specific
reference to the application to be launched. The checking of the input arguments is generic as is
the removal of data from previous runs. The script simply facilitates remote management of
directories on distributed disks. The application specific part is the launch of the pre-compiled
simulation for the scenario, on the assumption that the simulation is pre-compiled. For a
simulation engine that does compile the simulation engine, the script should include whatever is
necessary to build the simulation.

When the script is called, one of the arguments handed to the script is the name of the working
directory containing the information about what simulation is to be run and the root directory for
all of the outputs from the simulation. When the script exits, OSC will check the exit condition.

To merge the build process for the simulations with the execution of the simulations, the scripts
for all simulation engines can be modified to build the simulation before execution.

16

3. Overview of Specific Accomplishments
As a way of providing a summary of the major accomplishments achieved by SAIC during the
NMS project in one location, these were taken from the quarterly summary reports.

• Participated in the DARPA PI meeting on November 9-10, 2004. Demonstrated web-
based implementation of the NMS Remote Startup and Shutdown. Briefed on NMS web-
based integration strategies.

• Completed requirements analysis, design and implementation of remote startup and
shutdown of simulations for Global Information Enterprise Simulation (GIESim) using
Remote Procedure Calls (RPC) style (query/response) SOAP based message exchange.
A white paper was delivered to Dr. Kumar on September 28, 2004.

• Migrated all OSC APIs to be platform independent and delivered to Air Force Research
Lab (AFRL) for integration into GIESim on July 27, 2004.

• Began working with Georgia Tech at Dr. Kumar’s request to provide integration services
for Georgia Tech, University of Maryland and the University of Southern California
simulation projects. Leveraged upon work done for AFRL on the remote startup and
shutdown of simulations.

• Conducted requirements analysis and defined the necessary modifications to the testbed
in support of OSC integration with GIESim.

• Completed analysis of the applicability of existing fluid modeling to the wireless
environment. The key gap was identified in the barrier to using fluid modeling to in the
modeling of wireless networks.

• Participated in the January 2004 PI meeting. Supported the Joint Urban Operation (JUO)
demo per Joint Forces Command (JFCOM’s) interest. Provided NMS standardized
scenario data for over 1000 nodes in an appropriate military command hierarchy for the
JUO. Conducted OSC real-time analysis of the data.

• Completed OSC Framework Version 2.5.
• Presented OSC integrated with JAVASIM running “what-if” studies for 300+ nodes at

the spring 2003 PI meeting.
• Integrated OSC into SAIC’s Public Safety Integration Center (PSIC) testbed, where the

OSC shows real-time display of QoS from simulation in the Defense Threat Reduction
Agency (DTRA) Consequence Assessment Tools Set (CATS) to show value in homeland
security scenarios.

• Performed software development of OSC Framework version 2.5.
• Collected quantitative metrics to apply to Modeling and Simulation program. Results are

in the following figure:

17

Contributions to Key Metrics for applying M&S to DoD Needs.

Metric Improvement Initial Value Current Value Target Value
Data Collection

Bandwidth
Requirement

X102 + 1Mbyte/min/node 3 2Kbyte/min/node 600byte/min/node4

Ad hoc
Wireless

Simulation
Speed 5

X103+
1500xslower than
real time for 100

nodes

2x faster than real
time for 100 nodes

2x faster than real
time for 100 nodes

QoS and
Mission Impact

Analysis and
Display latency

X103+ Next day if at all <1 minute Achieved.

“What if”
studies speed X103+ Days to Months Real-Time Achieved

Planning speed X10 Weeds to Months Days Hours
Ease of Use of
Simulation in

Field
X10 3 months training 1 week training 6 Achieved for now.

Plan Quality X2 N/A—Value is by example test case

Figure 3-1. OSC Contribution Metrics

• Developed requirements for OSC framework version 2.5 and for the spring 2003

integration experiments.
• Developed preliminary specification of the demonstration for the spring 2003 PI meeting.
• Presented and demonstrated at the fall 2002 PI meeting.
• Simulation results met/exceeded requirements for the period. Achieved simulation of

100 nodes in twice real-time speed with no loss of fidelity relative to state of the art.
• Finalized version 2 of OSC framework and began work on version 2.5.
• In the development phase of OSC version 2 software, and anticipate entering the testing

phase by November 1st, in time to complete system testing in preparation for the
November PI meeting.

• Completed scenarios to be used for the November PI meeting demonstration, and
generated a larger scenario that will be useful through the remainder of the base program.

• Continued support to the Architecture Working Group.
• Generation and support of a Scenario Working Group for the Future Combat System

(FCS) scenario production.
• Generated requirements for versions 2.1, 2.2, and 2.5 of OSC.
• Generated design documentation for version 2.
• Developed system testing procedures for version 1.2.
• Explored more enhanced features of the system for future versions including more QoS

metrics, more enhanced displays, adopting display filtering and improved performance.
• In conjunction with DAIDA, generation of new tool to capture network information in

real-time and record statistics directly from the new tool.
• Support for remotely executed simulations.
• Support for remotely located simulations.

18

• Integration of CORALREEF data as input source.
• Integration of Extended Littoral Battlespace (ELB) exercise data as input source.
• QoS calculation adaptations to support limitations of tools.
• Port of OSC to Linux.
• Maintenance of OSC, and support of Georgia Tech integrating Network Simulation (NS)

using OSC APIs.
• Extension of the OSC framework to configure and manage distributed simulations.
• Development of a user’s manual for the OSC framework software tools.
• Development of an API software package supporting integration of simulation engines.
• Packaging of the OSC framework for use by others on the NMS program.
• Built and studied interface for use of simulation by network managers in the field.
• Implemented a QoS summary calculation for network performance and integrated it with

network management interface.
• Implemented a “parallel processing farm” approach to accelerate use of simulation on-

line.
• Worked with SSS to integrate QualNet replacing PARSEC in the testbed.
• Integrated and used wireless 3G routing protocols including AODV and DAWN in

addition to the previously integrated BellmanFord routing.
• Worked with Georgia Tech to partially integrate the NS efforts with our testbed.
• Worked with Rice University towards integration of their fractal efforts with our testbed.

19

4. Web Services Based Architecture for Simulation
Management and Control – The Way Forward

Modeling and Simulation applications, as with other software systems, are typically developed to
address the issues of a specific problem domain and satisfy the needs of a specific user
community Modeling and Simulation (M&S) applications

• Are funded and developed by different organizations to schedules that are
uncorrelated

• Target different hardware platforms and operating systems and are written in different
programming languages

• Have different interface requirements, different input and output data format and
content, and may have different constraints on throughput

Any strategy for interconnecting M&S applications must take these realities into account. One
such strategy which does is the Extensible Modeling and Simulation Framework (XMSF).
XMSF is defined as a set of standards, profiles, and recommended practices for web-based
modeling and simulation. XMSF has outlined an extensible framework making use of Web-
based services which would allow a new generation of M&S applications to interoperate.

A Web service is a software system identified by a Uniform Resource Identifier (URI) and
whose public interfaces and bindings are described using Extensible Markup Language (XML).
These definitions can be discovered by other software systems which can then interact with the
Web Service in a manner described by its definition using XML messages conveyed by Internet
protocols.

XML serves as the payload in Web Services messaging and as the descriptor of Web Services.
XML forms a basis for organizations to agree upon and manage shared data within and across
communities of interest.

SOAP is a protocol for accessing a Web Service. It is a lightweight protocol for exchange of
information in a decentralized, distributed environment. It is an XML based protocol that
consists of three parts: an envelope that defines a framework for describing what is in a message
and how to process it, a set of encoding rules for expressing instances of application-defined data
types, and a convention for representing remote procedure calls and responses.

4.1. Adapting Existing Applications to Web Services
As a practical exercise in applying some of these principles we took an existing modeling
scenario (Figure 4-1) consisting of an OPNET simulation along with some federates
communicating with a Run-Time Infrastructure (RTI). Our objective was to expose these
applications such that a remote user would be able to start them (and pass command line
arguments), monitor the running application, and finally stop them - using SOAP messages
(Figure 4-2).

20

OPNETRTI Test
Federate

ControllerOPNETRTI Test
Federate

Controller

Figure 4-1. Original Configuration

OPNETRTI Test
Federate

Web
Browser

Soap/Http

Controller

Figure 4-2. Test Configuration

4.1.1. SOAP Server
The integration approach made use of an open source SOAP framework. The Zolera SOAP
Infrastructure (ZSI,), is a pure-Python module that provides an implementation of SOAP
messaging as described in SOAP 1.1 specification. In particular, ZSI parses and generates SOAP
messages, and converts between native Python data types and SOAP syntax. Python is an
interpreted, interactive, object-oriented programming language particularly well suited for
integration tasks and “gluing” together components written in C (C++), FORTRAN, Java, and
others.

When the server is first launched an initialization file is read. The SOAP server is limited to
handling requests for the applications that are specified in the initialization file. This has the
advantage of only having to modify this file to add a new application for which
start/monitor/stop services are to be provided (and then to restart the SOAP server). The
windows implementation of the SOAP server uses the Windows Management Instrumentation
(WMI) which provides management information and control API to the Windows operating
system (Figure 4-3).

21

Port 8085

HTTP
Server

WMI

Opnet
Sim

….

Dispatch / Message Processing

Figure 4-3. Windows Platform Architecture

4.1.2. Web Services Client
The Web Services Client uses the Liferay Portal to provide access to the modeling and
simulation environment via the web using a web browser. Liferay is an open source portal and is
designed to be application server independent 1 . Liferay will work on lightweight servlet
containers like Jetty and Tomcat, or on Java 2 Platform, Enterprise Edition (J2EE) compliant
servers like Borland ES, JBoss/Tomcat and WebSphere. Liferay will also work on many
operating systems such as BSD, Linux, Solaris, Mac OS X, and Windows. Our portal uses the
JBoss/Tomcat Application Server and the Windows Operating System.

Liferay provides many sample portlets as part of the environment. The web services client has
been added to the environment as a portlet titled “SimConsole”, and can be seen in Figure 4-4.
This figure also shows a sampling of the many portlets provided by the Liferay Portal.

The SimConsole portlet interfaces with the Web Services SOAP Server for remote startup and
shutdown of several modeling and simulation federates. Also developed for the client was a
SimConsole JavaServer Pages (JSP). The JSP code provides the display that is shown in the
figures below. In addition to the portlet and the JSP, several XML files were modified to
provide the glue code for “SimConsole” action handling, path association, and portlet
identification and categorization.

1 http://www.liferay.com

22

Figure 4-4. Web client - The “SimConsole” Portlet

23

Figure 4.5. Web client – Launching a Federate

Upon selecting “RTI” in Figure 4-4, the display in Figure 4-5 will be shown in the web browser.
Figure 4-5 shows the parameter specification for the RTI federate. It allows the scenario input
data location and any command line arguments to be specified. It also allows the Internet
Protocol (IP) address and communication port number of the Web Service “SOAP Server”
application to be specified via the web services client. Selecting the “Start” button initiates the
RTI “Start” command to be sent to the SOAP Server from the portlet interface, which in turn
starts up the RTI federate where the SOAP Server is running.

24

Figure 4-6. Web client – Summary Status

Once the RTI “Start” command was pressed (Figure 4-5) the SOAP Server attempts to start the
RTI Federate on the specified IP. The web browser will then return to a status screen of the
SimConsole portal (Figure 4-6). This screen indicates the status of each federate included in the
modeling and simulation web services implementation. The “Update Status” button will allow
for polling to the SOAP Server to find out the latest status of the running processes. This screen
will be updated accordingly.

4.2. Web Services Summary
A simple Remote Procedure Calls (RPC) style SOAP message service capable of launching,
monitoring, and stopping remote M&S applications from a standard browser was successfully
demonstrated at the DARP NMS PI Conference in Monterey California in November 2004. This
is really only a first step. To be a useful service a Web Service Definition Language (WSDL)
would need to be published and the XML structure of the simulation inputs (like traffic, topology
and mobility) as well as the outputs have yet to be defined and standardized.

25

5. Conclusion
As can be seen from our accomplishments summary in Section 3.0, SAIC has made contributions
in many areas of the NMS project over the course of this contract. Our primary focus throughout
was on developing a framework which could be used to quickly and easily integrate modeling
tools providing a common user interface for configuration and results analysis. OSC has been
successfully demonstrated on numerous occasions and integration with modeling tools such as
Opnet and QualNet and network sniffers like CoralReef have been accomplished. An integration
approach using Web Services has also been explored and shown to be viable strategy for NMS
integration.

26

6. ACRONYMS

AFRL Air Force Research Lab
API Application Programming Interface
ASCII American Standard Code for Information Interchange
DARPA Defense Advanced Research Projects Agency
DoD Department of Defense
DTRA Defense Threat Reduction Agency
ELB Extended Littoral Battlespace
FCS Future Combat System
GIESim Global Information Enterprise Simulation
HPOV Hewlett Packard Open View
IP Internet Protocol
J2EE Java 2 Platform, Enterprise Edition
JFCOM Joint Forces Command
JMTK Joint Mapping Tool Kit
JSP JavaServer Pages
JUO Joint Urban Operation
M&S Modeling and Simulation
NETWARS Network Warfare Simulation
NMS Network Modeling and Simulation
NS Network Simulation
OSC Online Simulation and Control
PDEF Platform Definition File
QoS Quality of Service
RPC Remote Procedure Calls
RTI Run-Time Infrastructure
SA Situational Awareness
SAIC Science Application International Corporation
SDF Scenario Description File
SEAMLSS Simulation and Evaluation Adaptive Mobile Large Scale Network System
SOAP Simple Object Access Protocol
URI Uniform Resource Identifier
WMI Windows Management Instrumentation
WSDL Web Service Definition Language
XML Extensible Markup Language
XMSF Extensible Modeling and Simulation Framework
ZSI Zolera SOAP Infrastructure

